Online Transfer Learning in Reinforcement Learning Domains

نویسندگان

  • Yusen Zhan
  • Matthew E. Taylor
چکیده

This paper proposes an online transfer framework to capture the interaction among agents and shows that current transfer learning in reinforcement learning is a special case of online transfer. Furthermore, this paper re-characterizes existing agents-teaching-agents methods as online transfer and analyze one such teaching method in three ways. First, the convergence of Qlearning and Sarsa with tabular representation with a finite budget is proven. Second, the convergence of Qlearning and Sarsa with linear function approximation is established. Third, the we show the asymptotic performance cannot be hurt through teaching. Additionally, all theoretical results are empirically validated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical Functional Concepts for Knowledge Transfer among Reinforcement Learning Agents

This article introduces the notions of functional space and concept as a way of knowledge representation and abstraction for Reinforcement Learning agents. These definitions are used as a tool of knowledge transfer among agents. The agents are assumed to be heterogeneous; they have different state spaces but share a same dynamic, reward and action space. In other words, the agents are assumed t...

متن کامل

Autonomous Cross-Domain Knowledge Transfer in Lifelong Policy Gradient Reinforcement Learning

Online multi-task learning is an important capability for lifelong learning agents, enabling them to acquire models for diverse tasks over time and rapidly learn new tasks by building upon prior experience. However, recent progress toward lifelong reinforcement learning (RL) has been limited to learning from within a single task domain. For truly versatile lifelong learning, the agent must be a...

متن کامل

Reinforcement Learning Based PID Control of Wind Energy Conversion Systems

In this paper an adaptive PID controller for Wind Energy Conversion Systems (WECS) has been developed. Theadaptation technique applied to this controller is based on Reinforcement Learning (RL) theory. Nonlinearcharacteristics of wind variations as plant input, wind turbine structure and generator operational behaviordemand for high quality adaptive controller to ensure both robust stability an...

متن کامل

Transfer Learning in Multi-Agent Reinforcement Learning Domains

Transfer learning refers to the process of reusing knowledge from past tasks in order to speed up the learning procedure in new tasks. In reinforcement learning, where agents often require a considerable amount of training, transfer learning comprises a suitable solution for speeding up learning. Transfer learning methods have primarily been applied in single-agent reinforcement learning algori...

متن کامل

Transferring Expectations in Model-based Reinforcement Learning

We study how to automatically select and adapt multiple abstractions or representations of the world to support model-based reinforcement learning. We address the challenges of transfer learning in heterogeneous environments with varying tasks. We present an efficient, online framework that, through a sequence of tasks, learns a set of relevant representations to be used in future tasks. Withou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1507.00436  شماره 

صفحات  -

تاریخ انتشار 2015